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THE USE OF EULERTAN INITIAL CONDITIONS IN A LAGRANGIAN MODEL

OF TURBULENT DIFFUSION¥

J. T. Lee and G, L. Stone
Atmospheric Sciences Group (MS-D466)
Los Alamos National Laboratory
Los Alamos, NM 87545

t. INTRODUCTION

Gifford (1982a,b) kas shown that the random-
force theory of turbulent dfffusion describes
many features of horizontal diffusion in the
atmosphere, In this theory Langevin’s equation
is ured to calculate trajectories of tracer
particles through a field of homogeneous
turbulence. The statistics of a large number of
these particles are used to describe the diffu-
sion of pulfs and plumes. Gifford analyzed
single-particle diffusion from a point source.
He accounted for relutive diffusion by wusing
condltioned {nfitial velocities for the particles,
and his firal results contain the effective
soutce velocity ae a free parameter.

In this paper we extend Gifford’s analysis
to clusters of particles from finite-size,
finite~durition sources. We use the Fularian
space-time velocity autocorrelation function to
deacribe the statistics of the particle initial
velocities, Gifford’s effective source velocity
is  replaced by two new parameters: the ratio of
the source aize to the Fulerian integral length
scale and the ratio of the release timas or
eampling time to the Fulerfan {integral time
scale.

2. THEORFTTCAL ANALYSRILS

We consider diffusfon in one space Jdimensfon
y and time t., This 18 a reasonable approximation
to horizontal diftusion in the atmosphere whe.o t
in the travel time downwind of the nAource. In
our analysis y is the cross=~wind coordinate and v
ia the cross-winl component ~»f the turhulent
velouvtity. Smith  (1968) propomed that the
turbulent velocity could be written as the sum of
correlated and random components, v(t + 1) =
v(t)R (1) + v', where R {8 the Lagrangfan auto~
corvrelation function which_depends only on the
time separation T, RL(T) = v(t)v(t + 1)/vé,  and
v’ is a random velocity., Overbaram uenote
ensemble averages, Gif.ord (1982a) used thin
relation to derive a form of Langevin’sa equation

dv

a5 + fv = n(t) (1)
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where n(t) 18 the vandom acceleration. Gifford
(1982b) showed that the Lagrangisn autocorrela=-
tion function consistent with Tq. (1) 18 an
axponential, = axp(~t/t,), for arhitrary
values of the initial velocity v . The
Lagrangian integral time scale fie 4 and B =
l/tL. A general discussion of the application of
Eq. (1) to turbulent diffusion can ba found fin
Gifford’e papers and the refarences therein.
Smith's linear velocity relation has also bheen
uned 1in Monte Carlo simulations of turbulent
diffusion. This numerical approach is equivalent
to the use of Rq. (1),

In this atudy we consider the diffusion of
particlen released as one-dimensfonal clusters.
These cluste.s can be used to coustruct a plume
froma finite-size, finite-duration source as
shown schematically in Fig, 1. The width of the
source is d and the relense time is t,, This in
a one-dimensional vergion of the familiar
apreading=-disk plume model {n which the clusters
contaipr material that 18 reieased wequentially
from the source during small time incremants, and
axial diffuaifon 1is neglected. Fach cluster ia
divided into an arbitrary number N of tracer
particles or ragged eclementa of fluid, FEach
particle representa a fraction 1/N of the mans (n
one cluater.

The tiajectory of each particle afrer itn
relense {8 assuncd to he governed by FEq. (1),
The particle displacement y(t) can be found in
the li.erature on Browniar motion, Cuf.
Uhlenbeck and Ornatein (1930}, and {s gliven by

t
y(£) = yo + (v /81788 w p7lemBt [ oSy,

(4]

t
+ 81 [ n(e)rde ()

4]

where y, and v, are the {attial poattion and
velocity of the particle, respectively, Fxpected
valuen of the meandering of the plume centrotd
and the relative diffuaion of particles about the
plume centroid can be ohtafned by using Fq. (2)
and averaging over an enmembhle of plumes, The
plume in Fig, | 1a one particular realization or
trial in the enaemble, Fach trial conafats of M
cluntera coutaining N particles each, whera M in
s large number for all finfte vilues of t and
2 & N< =, For a particulay trial, averagen at a
{ixed obmervation point t = x/if are obtafned by
avaraging over the N partic’eaa {n each cluater
and over the M clustern {n each trial asn the
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Fig. 1. Plume fron a Finite-Size, Finite-Duration
Source

clusters pass the obgservation point., ¥xpectad
values are then obtained by averaging over the
large numbur of trials which make up the
enaenrble. Solutions for the instantaneous
release of a single puff, tg * 0, can “e obtained
by using only one cluster per trial, M = I,

The most important aspect of this study 1is
the treatment of the particle initial velosities
vy in cnlculating the ensemble averagar from
Fq. (2). Since each particle is a tracnr, its
velocity {e equal to the 1local value of the
turbulent field velocity v(y,t) duriag itn entire
trajectory. Therefors, we set v_  equal to the
turbulent field velocity af  the source,
l.e, v = v(y,,t,) where y, is the initial
uplt(a? coorainnto of the partficle within =a
cluster and ¢  {is the tim: at which the cluater
is releaned “rom tha source, The inftial
velocities 4n  each cluster are spatially
correlated ovar the aource width d and the
velocitian from cluster to clucter are temporally
correlated ovar tha release time t,. In our
modal thim correlation of velocitien in
accomplished by umse of the Nulerian space-time
velocity autocorrelation function which depandn
only on the wapace separation L  and the time
saparation v, Ry(g, 1) = viy,t)v(y + ¢t + Y
The enmewble statistics of the infttal veloctties
can bhe calculated for given valuesa of d and t, 1f
Rp 1n known, We amuume that Ry can he repre-
nented by axponentiale, R¥ -
nxp(—lc[/h)oxp(-t/tv), where 1 and ty are the

Fulerian integral leagth and  time  nmcales,
ranpectively. The calculatad valuen of the
f.ltial velocity atatfatics depend uj d/1. and

te/ty.

This approxfustion for the particle inttial
velocities neglecta many real source «ffects auch
as  bouyancvy and mumentum of the mource materia!
and  the aerodynamic interactfor bhetween the
source and the ambiant flow., We asmume there ia
a tranmition reagpton (mmediately downwind of the
source within which the efflvent comea {ntoe
squilibrium  with  the  turbulence 1n the
atmoaphern, The temults of thia theory apply
downwind of the tranuitien regfon, and the source
siza 4 whould be regarded an the width of the
plume at the end of the tranattion veglon,

In caleulating conemble Averagen an
dancribhed  above Ve agsume  that the random

perticle accelerations n(t) are statistically
independent for each particle trajectory. We
account for inter-particle velocity correlations
when we assign the particle 1initial velocities
Vs but we do not explicitly account for these
inter-particle correlations when calculating the
particle trajectoriea. This 18 quite different
from the classical approach of Batchelor (1950)
and Brier (1950), ir which relative diffusion is
described in terms of the two-particle Lagrangian
velocity correlation function RZL(L,Y) -
vl(t)vz(g - 1) /;T where v; and vy are the
velocities of two different particles and
0 <t <t, Batchelor derived a kinematic rela-
tion for the mean-square separation of a palr of
particles in terms of and Ry;. This relation
is exact, but it is very difficult to apply since
RZL i{s an unknown nonstationrry function of t and
T, even for setationary homogeneous turbulence,
In two recent articles, Sawford (198la, b) has
used this approach to obtain numerical solutions
for the relative diffusion of pairs and clusters
of particles. His results are dependent upon the
assumed form of Ryps Tt is easily shown that our
model produces a two-particle correlation func-
tion of the form Ry (t,t) = Rg(byy,0dexp(-t/ty,)
exp(-(t - !)/tL) where 8y, is the fnitial
particle separation. This form was suggested by
Brier (1950) and was dismissed by Sawford (1982a)
as being physically unrealistic. However, as we
will ahow in this paper, it leads Lo reasonable
results that are in agreement with many of the
known characteristics of relative diffusion.

Mathematical details of the averaging
procena deacrihed ahove and general molutfons for
2 < N« = are prosented {n Lee and Stone (1983),
The clanaical two-particle diffurion results can
be obtained by setting N = 2 i{n the general solu-
tions. Here ve present the molutions for the
limiting case of N + = which {a the appropriate
limit for application to plumem and puffam in the
atmosphare,

The diaplacement statimtice which we will
conaider {n tYie paper are the rolative dfffu-
aton, the meandnrlng, and the total diffusfon,
The relative diffusfon o (s deftned auw the
expected value of the atandard deviatfon of the
displacements of the particles {n a cluater
r.lative to the cantrotd of the clunter, Thin in
equivalent to the expacted value of the standard
deviation of the {instantaneoun concentrat fon
di{stribution. The meandaring O 1 dofined aw
the expected value of the atandard deviation of
the diaplacementa of the cluster centrotd pont-
tions relative to the avearage centrn’d poaition,
vhere the "average" centrotd ponftion referas to a
particular trial of M  cluaters. Thin in
equivalent to the axpected value of the “half-
width" of the envalope of plume controtd post-
tiona that would be ohaerved durtng  an
erpoariment,  The total diaperston o, s defined
by the uuugl rgletign for the aummation of
variancean, 0; - uﬁ ‘ ﬂ&. Thin definttion of oy
i ejuivalent to the expoacted value of the
atandard  deviation of the time—averaged
concentratlon diatributfon that would ba meanured
by & fixed array of wamileora during an
axperiment . Roth o and U dopand  upon the
avera (ing t {me vhivh. for n partfeulary
expeiment , {a equal to the aanpling tlire ty or



the release time tp. If tp > g only the
material released during a period of time equal
to the gampling period to will he ohaerved, If
tg > tp the samplers w?ll collect material only
during a periad of time equal to the release time
tp., Therefore, the shorter of these two times is
t§e appropriate averaging time and will determine
the values of d. and or. In the remainder of
this paper tg and tg will be used
interchangeably.

The theorecical results are presented in
terms of i divenaionlnsn variance and _time
defined by L€ = ¢ /2v t2 and T = t/t, where vZ is
the variance of the ve*ocity in the turbulent
field and t, {4s the Lagiangian integral time
wcale, The theoretical plume solutions are given
by

=241 - (1) - G 2)(1-e"T)? (3)
1% - (1-8) (5/2)(1-e"T)?2 )
2 =2+ 1= (1-e”D) - (R5/2)(1-¢"H2 (5)
We have assgumed that the 1inttial spatial

diastribution of particles is uniform over the
source width corresponding to a “top-hat" con-
centration profile, Therefore, the dimensionleas
atandard gevin fon of the plume at the source 1a
given by Eo /ll vhere D is thgv,?}yrnaionlans
aource width, n ~  d/(2v%) The
dimenajonlens parameters S and R result %rom the
spatial  and temporal averaging, respectively, of
the particle 1inftfal velocities. In general,

they are functions of N, d/L, t /t , and the
functional form of the Pularlnn upnco-t me auto-
correlation functfon., For N + » and an exponen-
tial mpace-time autocorrelation functtun, they
are given by the relations § = F(d/L) and
K= F(tR/tv) where the function ¥ 1a given by the
relaticn

FIO) = (/40 = 1+ o) (6)

The  functton  F(L) fa  plotted in FIg, 2. Note
that F(L) 1s unity at L = 0 and approaches rero
Tike 1K an L appromchen infinity.
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Fig. 2. Hourca Correlation Function

Equations (3)-(6) illustrate some inter-
esting properties of atmospheric diffusicn, The
total diffusion I, depends upnn the spatial
extent of the source d/L and the tempor .l extent
of tte source t./t, ir a aymmetric manner through
the parameters § and . 1f d/L + = (§ = 0) or if
t /t and tS/t + o (K = 0) the last term in

%5) drops out and L. becomes equal to the
claaaical Taylor diffusion result for an exponen-
tial Lagrangian autocorrelation function, For a
finite value of either d/L, tp/tg, or tS/t , the
total diffusion XT is less than Taylor diffusion'

The ralative diffusion ZR depends only upon
the spatial xtent of the source, d/L, through
the parameter S. For d/L + = (S = 0) the inittal
velocities are not spatially correleted and I 1is
equal to Taylor diffusicn., For d/L + 0 (5 = 1)
the 1initfal velocities are perfectly correlatea
in space and I, 18 leas than Taylor diffusion.
The parameter d/L will be very small for most
concentrated sources in the atmosphere, bdbut {t
may be of order unity for area sources.

The meandering 20 vanishas when d/L + =
(S = 0) since we t.en have Taylor type diffusion.
It also vanishes when tS/tE + 0 (R= 1), Thin
latter result arfses from our definition of L. as
the meandering of the plume centrofd ahbout 1ite
average position for a particular ctrial or
experiment, In tearms of & sampling array, thias
simply meann that the meanured plume width Ep is
equal to the actual plume width ER {f tg + 0,

Tha lnetnntnnaoun releasa of puffr
corresponds to t /c 0 (R =~ 1), Howaver,
because of the wny E in defined, Tqa. (V)=(°) do

not reduce to a unefu‘ form {n this Ilimic. For
puffs 4t {a mote uaefu! to define the meandering
of the centrold relative to the axis of the mean
wind, y = 0, Wi*h thia modif{cation, the aolu-
tione for tuatantaneously relessed puffs may be
writien an

B e a1 - -e™Ty - (01" (7)
rZ - (8/2)(1=0"T)2 )
r2 el e e (1T (9

Bquatfone (7)=(9) are eonsemble average valuen
that sou'd be ohtalnad by releaning a very larse
number  of puffa anders "tdentical™ condittonn and
IV“TIR'HK the reanlte, Note that Hqa. (V) -(M)
with t and (n/t +oa (R = 0) are fdentteal to
Fqn, Y?) -(M, ?hun, the particle diaplacenent
atatiatican for a coutinucun plame wivh a lavge
aampling time are the wame ar for a  lavpe
enronble of {natantansounly veieanad poffn, Thin
equiv.lence {u further flluatrvated by the fact
that  the relattive diffuston X, doon not depend
upon the veleane tine and tn the name for  plumen
and puffa, Faa, (1) anl (1),

The analytic resulta preasnted abova, ¥qn,
(1)-(9), can alay he obtatned nalng a wumarfeal
Monte  Carlo  appreach.  Thia approach, which can
be formulated tn etther a Lagvinglan or Faiertan



reference frame, 18 discussed in detail by Lee
and Stone (1983a). We have done extensive Monte
Carlc celculations and have found very close
agreinent between the numerical and analytic
results, Detaf! ¢ the numcrical method and
comparfsons to anc * resutls are presented 1in
Len~ and Stone (19834

3. RESULTS

The solutions for ins antaneously released
ruffs or for a continuous ;iume with a large
sampling time, ¢t /t, + o, .re shown in Fig. 3.
We have plotted the growth of the standard devia~
tion I relative to the initlal value I as a
function of time after release T. The upper curve
is the total or Taylor diffusion Ly from E. 9).
The lower three curves are the relative diffusion
ER from Eq. (7) for a range of source sizes
indicated by the parametar £ = d/L. Reference
lines with elopea of 1/2, 1, and 3/2 are shown
for comparison., The total d{ffusion {increases
like T for T < 0.5 and like T/2 for T > 3 with a
transition region between., The relative diffu-
sion curves siiow regions of accelerated growth in
which I, increases more rapidly than T. For a
point source, d/L + 0, th§7 accelerated growth
ragion 1a of the form [ « 2 for 0< T 0,5,
For d/L > 0 the 1n1t§n1 growth {s lineatr {n T
followed by an accelerated growth region out to
T~ 1.0, The region of accelerated growth
becomes smaller as d/L increascs and virtually
disappcars for d/L > 1, These results are in
general agreement with Bachelor’s (1950)
similacity theory for two-particle relative
diffusfon in the {nertial subrange,
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Fig. V. Diffuaion of Puffa and Plumes
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The nature and extent of the acceleratad
Rrovwth teglon can he meen more clearly fo Ftg, 4
where we lave plotted the relative dfffusfon
divided by the total diffuston. For d/1, = 0 the
accelerated growth regton tn which %, & T han
a alops of 1/2 in thia flguro. It is seen that

the nvﬁ,&ern(-d grovwth rate {m generally lens
than T for d/1, > 0,

The effact of sampling time on the meanured
plume width Lp for a conttnuoun potnt  wouree  fa
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Fig. 4. Ratio of Relative tc Total Diffuaion

also represented by the curves in Fig. 3. This
can be seen by let:tr~ d/L + 0 (S« 1) 1n FRq.
(5) and comparing to Eq. (7). The lower three
curves in Fig. 3 give the total diffusion ET from
Eq. (5) for a renge of sampling times by setting
tq/tz = . The upper curre is the lfmiting value
for 't /tg + = (R = 0). The apparent accelerated
growth of I, retlacts the increasing contribution
of Ip to Iy as the sampling time decroases;
i.e, Eq. (5) gecomes more like Fq. (3) as R + 1,

Figure 5 1sa a 1linear plot o»f the total
diffusion, relative diffusion, and meandering for
puffs and for a conti{nuous source with a large
sampling time, Eqs. (7)=(9), for 4/L = 0. It is
seen that L. > ER for T <1, For T > 3, the
meandering gecomen emall compared to the relative
diffusion and approeches a congtant. The
relative di{ffusion inm, effectively, Juat
displaced below the total diffusion for T > l.
The accelerated growth of the relative diffueion
which {a obvious {n Pige., 3 and 4 {s difficult to
sec on this linear plot.
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Fig. %. Bolutionn for a Point Source

Thene  molutions can be applied to the
problem of fluctuating  concentration. ¥or
example, fn Gifford’a  (19%9) fluctuating plume
mode!l the ratfo of the peak {natantancoun con-
centrat fon to  the peak mern concsntration,
Cy /CPM° fa equal to the ratto of the varifancea
NT}Xﬁ. From Fqa. (1) and (3 we wee that thin
ratto dependn upon tha mource sire and vhe
nampling time. Thia ratfo {a plotted fn Fig. o
Jor a cont fnuouwa potnt mource (8 = 1) for a range



of sampling times tg/tp. One implication of
Fig. 5 18 that a sampl?ng time of tg ~ 3 ty 18
required to measure a Cpy value that is wit in a
factor of two of the long time averaged Taylor
value.
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Fig. 6. Inatantaneousr~to-Mean Concencration Ratio

4, CONCLUSIONS

We have obtained simple aralytic solutions
for relative diffusion and meandering of puffs
and plumes based upon the random~force theory of
turbulent diffusion, These golutions assume that
the “nitial velocities of the tracer particles
are {identfical to the turbulent field velocities
at the source location, The spatial and temporal
correlation of these velocities are, therefore,
determined by the Fulerfan space~time autocor-
relation function, and the appropriate ensemhle
averages can  be calculated {f this correlation
functlion {8 krown., These polutions exhibit many
of the known features of relative diffusfon and
are in goneral agreement with similarity theory
for the {nertial gubrange.

Our golut fona are presented in dimenslonlenn
form and are applicable to turbuleat diffusion on
any scale. To apply these resulta to actua)
rxperiments, the magnitude of the Fulerfan
integral length acale L and tho Fulerlan aad
Lagrangian intepral time acales and muat
be krown, " h we can  be dctormlno1 on*y from
experimental datx, Tn a companfon paper, Lev and
Qto1o (1983a), wo prement a mathod for relating

€, to ty and L. Gifforu’s (1982a, b) analysia of
long  and  short range datn  SugResta that, for
horizontal diffusfon {n the atmonphere, ty in of
the order of 11 we:. Thia 1a much larger than
the generally accepted value of t; and has led
Gifford to mugpest that very large wcales of mo-
tion ahould he treated am turbulence {n modeling
hortrontal  atmoapheric diffuaton, However, thims
leaven unaravered the {mportant practical quea-
tion of how to make a smsparatfon betwnon the mean
wind and turhulence fu wmodeling  transport and
Alffunton.
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